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ABSTRACT 
  
 
Due to scientific interest on the one hand and political and regulatory obligations on 
the other hand the monitoring of ozone in the troposphere is an important issue. To 
this end, in Belgium as in many other countries, a fixed network of monitoring 
stations is operated. In order to estimate the ozone concentrations over the whole 
territory, a model is needed to spatially complement the sparse measurements. This 
paper describes the development of an interpolation scheme which is aimed at fast 
operational use. The model uses the population density as auxiliary data to remove a 
spatial trend due to titration by nitric oxide. The residuals are interpolated by kriging. 
As a benchmark the inverse distance weighting interpolation method is used with and 
without the detrending. The proposed model systematically improves the interpolation 
and makes a significant difference when estimating human exposure to ozone. It is 
generic in design, easy to implement and flexible to changes in the monitoring 
network. 
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1. Aim of research 
 
Increased ozone concentrations in ambient air have been an issue of research for 
several decades now, and its impact on human health is still very topical: e.g. 
Bernstein et al.1, Maynard2, Schlink et al3. Moreover, due to European regulations 
(European Community, 20024) the observation and control of ozone in the 
troposphere also received legal and political importance. To support impact 
assessments and to meet the requirements of the legislation, the monitoring of ozone 
is currently very important. Traditionally the observation of tropospheric ozone is 
performed by automatic analysers and by practical constraints restricted to a number 
of sampling stations at fixed locations.  However, since the real interest of impact 
assessments is in ozone maps that cover whole regions, a model is needed that 
spatially complements the observations in the monitoring points. 
 This paper describes the development of a robust spatial interpolation scheme 
applied to the territory of Belgium. The main focus is on the adequate incorporation of 
the titration effect due to NOx pollution, which is very significant in a highly 
urbanized and industrialized country like Belgium. Since Belgium is not a 
mountainous terrain,  orographic aspect are not taken into account. The goal is to 
develop a model that can serve in fast operational mode (see section 2.1.), hence we 
are not considering deterministic atmospheric computer models and we only permit 
the use of auxiliary data if it is readily available at all times. 
 
 
2. Description of area and data 
 
2.1. Telemetric network 
 
In Belgium the three regions, represented by the Interregional Cell for the 
Environment (IRCEL-CELINE)5, have the task to inform and/or warn the public 
about the ozone concentrations and to estimate the impact on human health and eco-
systems. For this purpose three telemetric air quality networks† are operated and 
ozone concentrations are currently measured continuously (and integrated to 30 
minutes averages) at 38 monitoring points (see Fig. 1). At these fixed locations an 
historical dataset is available, and based on these data a statistical short-term ozone 
forecaster (for daily ozone maxima) is operational since 1996 5,6. However, both the 
measurements and the forecasts are restricted to the sparse monitoring points and 
some inductive model is still needed to estimate the full spatial ozone state. Since this 
interpolation should complement the prediction model, it has to be fast in operational 
mode.  
For this research the data from 1998 to 2003 was used. Some analyses are presented 
separately for 2003 since it was a year with exceptionally high ozone concentrations. 
The set of used monitoring stations contains stations located in rural, suburban and 
urban areas (according to reference 4). Most of the stations are tagged as background 
type, some as industrial and traffic; the possible use of this kind of type-classification 
for interpolation is currently under investigation and will not be the topic of the paper. 

                                                 
† The telemetric networks are managed by the Flemish Environment Agency (VMM) in Flanders, the 
Brussels Institute for Management of the Environment (IBGE-BIM) in Brussels and the Institute for 
Public Service (ISSEP) and the Ministery of the Environment (DGRNE) in Wallonia. 
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2.2. Ozone in Belgium 
 
Ozone in the troposphere is a secondary pollutant originating from the interaction of 
other chemicals and sunlight. The photochemical formation of ozone is influenced by 
a series of non-linear reactions that were identified in the 1950s by Haagen-Smit7, 
among others. The effect of the precursors (being NOx ≡ NO&NO2 and volatile 
organic compounds VOC) on ozone formation depends on their mutual concentrations 
(Lin et al.8 , Sillman8). Belgium is situated in a region of high NOx concentrations due 
to intensive combustion processes. As a consequence the Belgian ozone 
concentrations in urban areas are usually lower than in their rural counterparts 
(Dumont et al.9); such a “VOC-limited” ozone formation regime is also observed in 
other north-western and central European urban areas. This knowledge on ozone 
chemistry is vital to grasp the spatial nature of ozone concentrations in Belgium. On 
the one hand the ozone phenomenon has a regional scale (of the order of the size of 
Belgium or larger) related mainly to the meteorological conditions. On the other hand 
urban NO pollution adds a very local character due to the titration reaction NO+O3 → 
NO2+O2 which destroys ozone in urban areas; the resulting NO2 can reproduce ozone 
when transported to rural regions. Since this underlying ozone process lacks spatial 
homogeneity, auxiliary data are needed to assess the spatial structure in the design of 
an accurate interpolation scheme, e.g. Coyle et al10, Diem and Comrie11. However, 
with the focus on an operational model, some caution is required. Auxiliary data sets 
are not always easily available (especially real-time data) and when a multitude of 
them is used, they can blur the transparency or decrease the stability of the model.  
 
 

 
Fig. 1 Population density and location of ozone monitoring points in Belgium 
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3. Methodology 
 
3.1. The statistical approach 
 
A spatiotemporal process like the formation of ozone, will usually contain spatial and 
temporal correlations. In this paper however, the temporal aspect of the problem will 
be neglected. This approximation is justified when the correlations in time are 
subordinate to correlations in space (which is likely in a dense monitoring network) or 
to a stationary trend (which will be included). Moreover, in this paper daily maximum 
values are used and consequently time-shifts are not important if the only effect is a 
relocation of the maximum within that day. Hence, from now on the notation of time 
will be omitted and the objective of this research is stated as: estimate the daily 
maximum ambient ozone concentrations for every cell of a 5km x 5km grid covering 
Belgium, on the basis of the concentrations measured at the monitoring sites. 
 A statistical approach to an interpolation problem like this one, usually starts 
with the definition of a linear estimator: the actual but unknown ozone concentration 
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determined by the user. In order to deal with the titration effect in urban areas 
(described in the previous section) the IDW model was in practical applications for 
Belgium often accompanied by the following pragmatic approach: 

 
 
 
 
 
 

This algorithm is simple and reasonable, but there are some weaknesses involved in 
the assumptions on which this technique is based: 
 

1) Ad hoc distance function: In the IDW the weight decay by distance is chosen 
to be a power law. This is a rather ad hoc assumption, which is not based on 
the character of the phenomenon. (In the implementation later in the text the 
value p = 4 is chosen.) 

2) Clustering: When several monitoring stations are spatially clustered, it is  
likely that they observe similar concentrations. In a good interpolation model 

their weight contribution to ( )xO
�

3

~
 should somehow be decreased. In IDW 

• Remove measurements from urban areas 
• Perform an IDW interpolation with the remaining data (power p = 4) 
• In the urban areas for which measurements are available, locally 

replace the IDW values by measurements 
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however the weights only depend on the distance from the measurements, not 
on the distance between measurements. 

3) Spatial homogeneity: Since IDW only includes relative distances, it does not 
incorporate the possibility of a spatial trend. IDW assumes implicitly that the 
processes underlying the ozone formation are homogeneous in space. 

4) Pragmatic approach: “In the urban areas for which measurements are 
available, locally replace the IDW values by measurements.” This contains 
two problems. How local should the replacement of IDW values be performed, 
i.e. what is the influence area of the urban site? And secondly, what to do in 
urban areas for which no measurements are available?  

 
Problems 1) and 2) will be tackled by replacing the IDW model by a kriging based 
model. This will be discussed later in section 3.3. An improvement of the errors made 
in 3) and 4) can be achieved by using the detrending technique described in the 
following subsection. 
 
 
3.2. Spatial homogeneity and detrending 
 
Due to differences in the underlying physical and chemical mechanisms, urban areas 
behave systematically differently from rural. Since most interpolation schemes are 
based on the hypothesis of spatial homogeneity, this spatial trend poses a problem. 
Some interpolation techniques can incorporate and estimate a trend, but in this 
research the chosen procedure is to explicitly determine and remove the trend before 
the interpolation is performed. In Fig. 2a) a histogram (normalised to a discrete 
probability distribution) is presented for a typical urban and a typical rural monitoring 
site in Belgium. The ozone values in this plot and the rest of the paper (unless stated 
otherwise) are: 
 

3OdayM = maximum daily 1-hour mean O3 concentration.   (2) 

 
Since the summertime is the relevant period for ozone pollution, our study is 
restricted to the period April – September (1998-2003). The plot clearly shows the 
negative shift in ozone values from rural to urban sites. To restore the hypothesis of 
spatial homogeneity, we would like the histograms to be independent of location.  
 
 
.  
 
 
 
 
 
 
 
 
Fig. 2 Probability density (based on data from summers 1998-2003)  
a) concentrations before detrending  b) logarithmic concentrations before detrending 
c) logarithmic concentrations after detrending  (Antwerp = urban, Dourbes = rural) 
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 To achieve this goal the spatial nature of NOx pollution needs to be 
characterised. It turned out that the population density is very suitable for this 
purpose. First, contrary to the NOx data itself, this variable is readily available for a 
5km x 5km grid. Secondly, although it is only an indirect characterisation of NOx the 
relation with the titration effect is very stringent, as can be seen in Fig. 3 a). In this 
plot the mean ozone value for week days‡ of each monitoring station is plotted versus 
the logarithm of the population density. A clear trend is present and can be fitted, e.g. 
with a second order polynomial as visualised. Note that this trend is present 
irrespective of further classification of the stations by proximity of industry or traffic.  
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Fig. 3 a) Measured 3OdayM  for different monitoring sites versus the logartihmic 

 population density together with second order polynomial fit (ozone averaged 
 over week days of summer months of 1998 to 2003). 
 b) Polynomial fit based on the same data from indicated years. 
   
 
  
For every location x

�
 in Belgium the known population density ( )x

�ρ  gives an 

estimate of the present ozone shift 3O∆ . This shift is used to detrend the measured or 

estimated ozone values at that specific location. In this manner, the residual variable 
at every location has a rural character. To show the robustness of this trend, in Fig. 3 
b) the effect of the year 2003 is presented. During that year extremely frequent high 
ozone concentrations were observed; the effect on the trend is a parallel increase of 
the curve. I.e. the increase does not depend on population density and consequently 
the ozone shift 3O∆  of the trend with or without the data of 2003 is equal. 

  It is not this residual itself but the logarithm of it that will be used in the 
interpolation: this detrended variable is denoted as ( )xD

�
: 

 
( ) ( ) ( ) ( )[ ])(log 333 xOxOxDxO

���� ρ∆+=→     (3) 

 

                                                 
‡ Fig. 3 presents ozone values for week days during summers 1998-2003. Week and weekend are dealt 
with separately because NOx pollution during weekends behaves differently, due to its strong relation 
with traffic emissions (Vanderstraeten et al.13). A similar exercise like that of Figure 2 and 3 was done 
for weekends, yielding a less curved trend with the same qualitative results: an improved spatial 
homogeneity. 
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The log transformation is used because ozone concentrations have a distribution that 
is similar to a lognormal (Fig. 2a) ), hence the logarithmic concentrations have a more 
Gaussian-like distribution (Fig. 2b) ), and Gaussian is best for the interpolation with a 
linear estimator (1). In Fig. 2c) the result of the detrending is presented. The 
distributions of the detrended urban and rural site are quite similar; i.e. the probability 
distributions are less site-dependent and the spatial homogeneity  has improved. 
 
 
3.3. Kriging-based interpolation 
 
Finally the interpolation of the detrended variable (3) has to be performed. A popular 
and solid technique to this is ordinary kriging, see e.g. Cressie14 or Isaaks and 
Srivastava12. In this method the weights of the linear estimator (1) are statistically 
optimised by the use of a spatial correlation that has to be estimated from the data. 
Usually it is assumed that this correlation between any two ( )1xD

�
, ( )2xD

�
 only 

depends on the relative distance 21 xx
�� − . The correlation function can to some extend 

be interpreted as a replacement of the power law of the IDW, with the additional 
advantage that this correlation is implicitly used to correctly assess the weight of 
correlated (clustered) monitoring sites. Hence, the kriging method deals with the 
problems 1) and 2) stated in section 3.1.  
 In traditional applications of kriging (like e.g. estimations of ore 
concentrations for mining purposes), one has a multitude of measurements scattered 
over space without the presence of a time aspect. In such a case, the correlation 
function is estimated by averaging over many samples in space. In our problem the 
number of locations is limited to an order of 30, far too low to make a good 
correlation in this manner. However, since time sequences are at our disposal a 
different approach is possible. For every pair of monitoring sites a spatial correlation 
between them can be calculated by averaging over many samples in  time. This matter 
is more profoundly discussed by Szentimrey15. The results for every pair of 
monitoring sites is shown in Fig. 4. A clear decay of the correlation as a function of 
the relative distance is observable. For the spatial range of Belgium, ± 200 km, a 
linear approximation seems reasonable and is used.  
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Fig. 4 Correlation between two monitoring sites, as a function of the distance. (The 
temporal average is based on data from summers 1998-2003.) 
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4. Results and discussion 
 
4.1. Evaluation of methodology 
 
To evaluate the described methodology, three models are implemented and compared: 
the simple inverse distance weighting model (IDW), a version of this model which 
interpolates the residuals (3) after the detrending (R_IDW) and finally the suggested 
residual model based on kriging after detrending (RIO: residual interpolation 
optimised for ozone). Obviously, measurements are needed to evaluate or compare 
these interpolation schemes. Since only point measurements from the monitoring 
network were available for this task, the comparison is based on “leaving one out”: 
the interpolation methods are fed with all measurements except one, which is 
estimated by using the interpolation. With this procedure the accuracy of the models 
can be assessed for each monitoring site.  
 As a first evaluation criterion the root mean square error between the observed 
and interpolated values (RMSE) is shown in Fig. 5.  In this plot only the stations with 
a history at least starting in 1998 are shown and they are ordered according to 
increasing population density. This plot shows that generally the error reduces from 
IDW to R_IDW to RIO. This is most clearly noticeable in densely populated areas. 
For the residual models R_IDW and RIO the error is less dependent on population 
density, which is a first indication that the detrending works well.  
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Fig. 5 RMS error of interpolation tools evaluated with “leaving one out”. Monitoring 
sites: ordered according to increasing population density. (The plot is based on data 
from summers 1998-2003)  
 
 For further evaluation the monitoring sites are first divided into a class of 
high- and a class of low population density. The class boundary is of course rather 
arbitrary, as a reasonable criterion the presence of a clear titration effect is used. On 
the basis of Fig. 3 the boundary is set at a logarithmic population density of 10, which 
corresponds to site n° 20 in Fig. 5. Note that this classification does not coincide with 
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that of the EU directive4 (urban, suburban, rural) since this is not simply based upon 
population density. For these two sets of monitoring stations, four set-averaged 
evaluation criteria are calculated: the RMSE, the mean (signed) error (ME), the 
systematic RMSE (RMSE_s) and the unsystematic RMSE (RMSE_u). The last two 
measures are determined from a least square error linear fit of the interpolated values 
versus the observed. The former is the RMS deviation of the observed values from the 
corresponding fitted values and gives an indication of the systematic model bias. The 
latter is the RMS deviation of the interpolated values from the corresponding fitted 
values, and is consequently a measure for the unsystematic fluctuations of the 
interpolation model around the linear fit. The result is shown in Table 1. 
 
 
Table 1 Evaluation criteria of the three interpolation methods for two sets of 
monitoring stations, averaged for the summers of 1998 to 2003. 
 high population density  low population density 
 RMSE RMSE_s RMSE_u ME  RMSE RMSE_s RMSE_u ME 
IDW 16.9 11.7 11.7 11.2  10.2 4.1 9.1 -0.8 
R_IDW 13.1 4.8 12.0 -0.3  10.0 3.8 9.1 -0.5 
RIO 11.4 4.5 10.4 -0.1  9.6 3.9 8.5 -0.7 
  
 
First consider the densely populated areas. From Table 1 it is clear that here the 
differences between the three models are most pronounced. To begin with, the 
RMSE_s is much smaller for the two residual models. This shows that the simple 
IDW was not well-tuned; the detrending described in section 3.2. has seriously 
reduced the systematic error. Further, on average the ozone shift performed in the 
detrending was well balanced since the ME is close to zero for both residual models. 
However, on the basis of RMSE_u there is a conspicuous difference between RIO and 
R_IDW. While this RMSE_u is similar for IDW and R_IDW it is significantly 
smaller for RIO, which indicates that the kriging-based interpolation of RIO is 
intrinsically superior to IDW for the given measurement network. This means that the 
correlation function that was derived in section 3.3. is adequate and improves the 
weighting of the different monitoring stations. The fact that both the detrending and 
the use of kriging improved the model is eminent from the RMSE which decreases 
from IDW to R_IDW to RIO. All these observations hold for the sparsely populated 
sites, but are much less distinct. In conclusion, RIO systematically outperforms the 
two other models, especially in areas of high population density. 
 To show that the quality of the interpolation models does not decline on years 
with high ozone concentrations, Table 2 presents the same evaluation criteria 
determined for the summer of 2003. The values are very comparable to those of Table 
1 and the conclusions made above still hold.  
 
Table 2 Evaluation criteria of the three interpolation methods for two sets of 
monitoring stations, averaged for the summer of 2003. 
 high population density  low population density 
 RMSE RMSE_s RMSE_u ME  RMSE RMSE_s RMSE_u ME 
IDW 16.2 11.2 11.2 9.8  10.5 3.8 9.6 -1.0 
R_IDW 14.0 6.3 12.0 -2.0  10.5 4.3 9.4 -0.5 
RIO 11.8 5.6 10.0 -1.3  10.2 4.3 9.0 -0.7 
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4.2. Estimation of human exposure to ozone 
 
To show the significance of the error-reduction presented in Table 1, the methodology 
is used to estimate the human exposure to ozone. To this end the SOMO35 index16 is 
considered. The principle behind this index is that the effects of daily ozone on 
mortality should be quantified only when the  maximum daily 8-hour mean 
concentration is higher than 35 ppb (70 � g/m3). Hence, for the quantification of the 
effect, one considers only days for which the daily ozone concentration (maximum 
daily 8-hour mean) exceeds 70 � g/m3, and then only the increment above 70 � g/m3 is 
used. This increment accumulated over all days of a year is defined as the SOMO35 
index. As the index uses the maximum daily 8-hour mean, the outcome of the 
accumulation over all days is multiplied by 8 to yield a SOMO35 index expressed in 
typical (hours µg/m³) units rather than in (8-hours µg/m³). 
  As a first exercise a comparison for the SOMO35 index is made between RIO 
and IDW for the year 2003 (the last year of the used data set). Both models are 
applied§ for every day of the year after which the index is calculated. Subsequently 
the relative difference (RD) between the two models is determined: 
 

35

3535

SOMO

SOMOSOMO

RIO

IDWRIO
RD

−
= .    (4) 

 
In Fig. 6 a visualisation of RD is presented: in the lightest grey areas the RIO 
estimation of SOMO35 is more than 10% above that of IDW; in the darkest grey areas 
the opposite holds. When this figure is compared with the population density in Fig. 1, 
the correspondence is obvious: in densely populated areas RIO estimates a 
significantly lower SOMO35 index.  
   
 

����
���

�
����������

������

 
Fig. 6 Spatial representation of the relative difference RD between RIO en IDW 
interpolation for the SOMO35 index of the year 2003. Ozone measuring stations are 
indicated by points. 
 

                                                 
§ For this calculation a different detrending curve (Fig. 3) is used. Hereto the maximum daily 8-hour 
running mean is averaged over the summer periods of 1998-2003.  Again week days and weekends are 
separated and both have their own detrending curve. 



 11 

 When spatially averaged over Belgium, the SOMO35 index from RIO and 
from IDW are equal, hence the difference between the two models is a difference in 
ozone distribution rather than an overall bias. This difference can become very 
significant when a weighted average is needed, like for the determination of the 
human exposure (HE) to ozone. As a measure for HE one can use the local SOMO35 
multiplied with the local population density and integrated over the area of interest. 
The result for the years 1998 to 2003 for Belgium are presented in Table 3. These data 
clearly show that the RIO estimates for HE are systematically lower than those from 
IDW. The differences are substantially and are mainly due to lower RIO-values in the 
densely populated areas. In section 4.1. it was shown that precisely in these areas the 
accuracy of RIO is distinctly superior to IDW. This leads to the result that for the 
estimation of human exposure to ozone the proposed methodology is better suited and 
makes a significant difference.  
 
 
Table 3 Human exposure (HE) in Belgium estimated by IDW and RIO  
in units: 1012 hours humans.µg/m3 

 
IDWHE  RIOHE  IDWRIO HEHE −  

RIO

IDWRIO

HE

HEHE −
 

1998 4.73 4.12 -0.61 -15 % 
1999 7.13 6.37 -0.77 -12 % 
2000 3.77 3.11 -0.66 -21 % 
2001 6.17 5.52 -0.66 -12 % 
2002 4.90 4.33 -0.58 -13 % 
2003 10.48 9.66 -0.82 -8 % 
 
 
 In the assessment of the impact on human health the EU ozone directive4 uses 
the WHO guide of 120 µg/m³ as a threshold for the maximum daily 8-hour mean 
concentration instead of 70 µg/m3. Using this higher threshold the described analysis 
of human exposure has been repeated. This results in an even greater relative 
difference between RIO and IDW, hence the conclusion remains that RIO gives a 
significantly lower but far more realistic estimation of human exposure to ozone. 
 
 
4.3. Some remarks 
 
 In the current model the population density is used as a measure for titration 
by nitric oxide. This is of course only an approximation. Firstly, a further distinction 
between week days and weekends was necessary to quantify the relation with the 
titration effect.  Secondly, the population density is not a perfect measure for all kind 
of sources of nitric oxide. Probably it is a good measure for domestic heating and also 
traffic (in Belgium, on a 5km resolution, traffic density is strongly correlated to 
population density) but e.g. (point) sources of industry are not captured by it. 
Therefore, the assessment of the titration effect can most likely be improved by using 
other auxiliary data. Currently, the possibility of land use data (CORINE) is under 
investigation.  
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5. Conclusions 
 
The method described above is able to adequately incorporate the NO-titration effect 
in a spatial interpolation model for ground level ozone concentrations, provided that 
weekends and week days are dealt with separately. Population density is used as a 
best approximation for the spatial distribution of the NO-titration. The method is 
designed for use in fast operational mode. Therefore the model is kept robust and easy 
to implement. It is very flexible to the addition or removal of monitoring stations, 
since no extra tuning or training is required. The auxiliary data (population density) is 
easy to acquire and does not require frequent updating. Despite its simplicity it 
significantly improves ozone assessments, especially for human exposure, in 
comparison with a standard  IDW model. RIO is currently producing on-line hourly 
ozone maps for Belgium5 and is immediately applicable in other VOC-limited and 
non-mountainous areas. 
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