
@BCL@600DCE50.doc 1/30
31/01/2008

Spatial interpolation of air pollution measurements using 

CORINE land cover data

Stijn Janssen(1,*), Gerwin Dumont(2), Frans Fierens(2), and Clemens 

Mensink(1),

(1) Flemish Institute for Technological Research (VITO), Boeretang 200, B-2400 Mol, Belgium 

(2) Belgian Interregional Environment Agency (IRCEL), Kunstlaan 10-11, B-1210 Brussels, Belgium

(*) Corresponding author. Tel: +32 14 33 59 67, fax: +32 14 32 11 85, e-mail: stijn.janssen@vito.be

keywords: interpolation model, air quality assessment, CORINE land cover, Kriging

Abstract

Real-time assessment of the ambient air quality has gained an increased interest in recent years. 

To give support to this evolution, the statistical air pollution interpolation model RIO is 

developed. Due to the very low computational cost this interpolation model is an efficient tool for 

an environment agency when performing real-time air quality assessment. Beside this, a reliable 

interpolation model can be used to produce analysed maps of historical data records as well. RIO 

is an interpolation model that can be classified as a detrended Kriging model. In a first step the 

local character of the air pollution sampling values is removed in a detrending procedure. 

Subsequently, the site-independent data is interpolated by an Ordinary Kriging scheme. Finally, 

in a re-trending step a local bias is added to the Kriging interpolation results. As spatially 

resolved driving force in the detrending process, a land use indicator is developed based on the 

CORINE land cover data set. The indicator is optimized independently for the three pollutants O3, 

NO2 and PM10. As a result, the RIO model is able to account for the local character of the air 

pollution phenomenon at locations where no monitoring stations are available. Through a cross-

validation procedure the superiority of the RIO model over standard interpolation techniques, 

such as the Ordinary Kriging is demonstrated. Air quality maps are presented for the three 

pollutants mentioned and compared to maps based on standard interpolation techniques.  
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1 Introduction

Ambient air quality is a major concern in highly urbanized and industrialized regions 

such as Belgium. For its assessment, a dense network of automatic monitoring sites is 

implemented by the three Belgian regions, collecting real-time data on a half-hourly 

basis. The real-time measurements of the telemetric networks* are used to inform the 

authorities and the public on actual air quality levels, to trigger a warning mechanism in 

case of threshold exceedance and to feed short term forecast models which predict air 

quality up to a few days ahead. The average distance between the nearest measuring 

stations is about 25 km. In spite of this dense coverage, it remains non-trivial to make an 

accurate spatial map from these point measurement values. However such a map is of 

great importance to accurately describe the general features of the spatial patterns of air 

pollution in Belgium, a need which has been put forward by the Belgian Interregional 

Environment Agency IRCEL. As an additional requirement, the resulting maps have to 

be available on-line in real time and at a minimal computational costs. This excludes the 

use of comprehensive time consuming deterministic air quality models for this purpose.

Apart from real time assessments, EU Member States must assess annual ambient air 

quality in all air quality zones and agglomerations on their territory. As expressed by the 

EU Air Quality Framework Directive 96/62/EC (EC, 1996) and the 4 emanating 

Daughter Directives, the actual reporting of this assessment is done - according to the EU 

Commission Decision 2004/461/EC (EC, 2004) - with the help of a questionnaire listing 

up the levels and exceedances at the measuring points in order to check compliance with 

the EU limit and target values. In view of a new Air Quality Directive the Commission 

tends, in line with the INSPIRE directive 2007/2/EC (EC, 2007), to promote more 

geographical oriented air quality assessment tools in order to check compliance 

throughout the zones and agglomerations of the Member States, rather than checking 

compliance in uplisted data at individual and not always geographically representative 

points. In this perspective, it is essential for the Environment Agencies of the Member 

States that they can rely on a tool for the production of correctly analyzed air quality 

                                                
*

The telemetric networks are managed by the Flemish Environment Agency (VMM) in Flanders, the
Brussels Institute for Management of the Environment (IBGE-BIM) in Brussels and the Institute for
Public Service (ISSEP) and the Ministry of the Environment (DGRNE) in Wallonia.
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maps. So, an accurate spatial interpolation model is an indispensable vital tool. In the 

recent literature a number of air pollution interpolation models have been presented (Ross 

et al. 2007, Arain et al. 2007, Denby et al. 2005). In these papers variants of the Kriging 

interpolation technique are presented as well as various possibilities for the 

implementation of land use regression models. These models combine in-situ 

measurements and auxiliary land use data to produce air quality maps. 

Pollutants such as ozone, NO2 or PM10 are governed by two different mechanism, each 

acting on a different spatial scale. On the regional level, fluctuations in the concentration 

pattern are mainly driven by meteorological (sub-continental) phenomena (Tombette et 

al. 2007, Mensink et al. 2007). Beside this, ambient air pollution can have a distinct local 

character due to local emission sources and their temporal variability (Vautard et al.

2007). In an urbanized region such as Belgium, the latter effects are significant (Mensink 

et al. 2005). In this paper we describe an interpolation model, called RIO, that is 

developed to incorporate both the regional and local aspects of the air pollution 

phenomenon and that produces concentration estimates on a 4x4 km² grid.

The outline of this paper is as follows. In Section  2 the RIO methodology is described in 

detail. In Section  3 model results are discussed, validated and compared with standard 

interpolation techniques. The same section contains a subsection on the uncertainty of the 

RIO results and outlines the operational setup of the model. A conclusion is presented in 

Section 4.

2 Methodology

The basics of the RIO model are described in depth in the paper by Hooyberghs et al. 

(2006). Here we will briefly resume the outline of the methodology with a focus on the 

extensions of the RIO model.
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2.1 Land use patterns and ambient air quality

RIO’s fundamental idea is a detrending or removal of the local character of sampling 

values before they are interpolated. The transformation of the air pollution values into 

site-independent quantities results in a spatial homogeneous input set which is a 

prerequisite for a correct use of any interpolation algorithm. Note that this fundamental 

requirement of spatial homogeneity of the input data if often disregarded in (air pollution) 

interpolation analyses. After the interpolation step, a re-trending or retransformation is 

applied in order to incorporate the local character in the final map at places where no 

monitoring data is available. To deal with the local scale of the air pollution phenomenon, 

a methodology is developed that links specific (statistical) properties of the air pollution 

to land use patterns at the same local scale. The methodology results in mathematical 

relations that establish those links and that can be used in the RIO interpolation model. 

In our previous work (Hooyberghs et al. 2006), the driving force (explaining variable) for 

detrending the measured ozone values was the amount of ozone titration by NO. The 

strength of the local NO-titration was surrogated by the local population density. 

However, we have observed that the spatial pattern of population density, although being 

a good driving force for ozone concentrations, is not necessarily a good and sufficient 

driving force for other pollutants such as PM10 which are not as exclusively linked to 

population density as ozone. Therefore, it is expected that the applicability of population 

density as an explaining variable for the local character of all pollutants (e.g. NO2, 

PM10…) is rather limited and should be extended by additional land use information. As 

such a land use parameter is defined for each pollutant based on CORINE Land Cover 

(CLC) maps (EEA 1995). By relying on the CLC data set, all different land cover types 

(urban, industrial, traffic, agricultural, natural,…) can be included in the analysis. The 

CLC data set provides a high resolution description (100x100 m² pixels are used) of the 

land use patterns, making use of 44 different land cover classes. As will be described in 

the next section, the CLC description is transformed into a so-called land use indicator, 

specifically optimized for each pollutant. By doing so, the high dimensionality of the 

driving force data (44 CLC classes) is reduced to one single value, representative for the 

local land use characteristics for a particular pollutant. A CLC map of Belgium with the 

NO2 monitoring locations in presented in Figure 1. The red-coloured densely populated 
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regions in the northern and central part of the country are clearly revealed as well as the 

green coloured rural areas and the large forests in the south. 

>>> FIGURE_1

2.2 Land use indicator

In the assessment procedure of the land use indicator, the first step is a characterisation of 

the land cover in the direct vicinity of the monitoring sites. After all, it is only at those 

locations that both air pollution concentrations and land use information is at hand and 

that relations between both can be formulated. 

For each monitoring station, a buffer zone dimensioned by a fixed radius is created (see 

Figure 2). Inside each buffer zone, the CLC pixels (100x100 m²) are determined and 

classified according to the 44 CLC classes. The resulting histogram can be seen as a 

spectrum that represents a fingerprint of the land use characteristics of the surroundings 

of the monitoring stations. Figure 3 shows that these land use fingerprints are quite 

different in the vicinity of a rural, an urban background and an urban station. 

The radius of the vicinity buffer is a free parameter in the methodology but it turned out 

that a radius of 2 km produces the best results. When the buffer is chosen too small, it 

becomes difficult to discriminate between e.g. a small town and a larger city. When the 

buffer is too large, the site-specific character of the CLC class distribution disappears and 

the distribution evolves to a general spectrum with very little discriminating power.

>>> FIGURE_2

>>> FIGURE_3

2.2.1 Establishing the land use indicator ß

In order to reduce the high number of degrees of freedom in the land use description, the 

44 CLC classes are grouped into 11 more general land use classes, hereafter called the 

RIO classes (RCL). The definition of those RIO classes is given in Table 1. Note that 
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especially for the urban, industrial and traffic classes, the highest resolution of the CLC 

classes is maintained in the RIO set. 

>>>>  TABLE 1

In order  to define a single value indicator that correlates the local land use characteristics 

to the local air pollution levels, the RIO class distribution in the vicinity of the station is 

transformed into a single land use parameter  according to the relation:















 




i
RCLi

i
RCLii

n

na
1log ,  (1)

In this formula, the index i runs over all RIO classes. nRCL i is the number of pixels of 

class i inside the buffer and ai is a pollution related coefficient for the RIO class i. As 

such, the -parameter is the logarithm of a weighted and normalised sum of the RIO class 

distribution. The pollution related coefficients ai are used to weigh the importance of a 

particular RIO class on the concentration in the air of the pollutant under investigation.

The -indicator can then be optimized for each pollutant individually by choosing a best 

set of ai coefficients for the RIO-classes as will be described in Section  2.2.2 and Section 

 2.2.3.

2.2.2 First guess of the land use indicator ß

A zero value for a particular ai coefficient in Eq. (1) means that the corresponding RIO 

class i is of no importance for the determination of the pollutant concentration in that 

area. Generally this might be the case for the RIO classes RCL10 and RCL11 which 

correspond to rural or natural land and water bodies. The RIO class RCL2 on the other 

hand (discontinuous urban fabric) can be considered as a land use type of major 

importance for the air pollution. Its corresponding coefficient a2 can be set at a reference 

value of 1 for normalisation purposes. By fixing the ai coefficients for RIO classes 

RCL10 and RCL11 at zero and for class RCL2 at the value of 1, the  parameter is forced 

to glide between 0 and an acceptable upper value (somewhere below 2). Moreover, by 
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setting and keeping three out of the 11 ai values at fixed values, the number of degrees of 

freedom for the parameterisation of the -value (Eq. 1) is reduced from 11 to 8. 

A numerical procedure will further on optimize the 8 remaining ai coefficients. However, 

a detailed analysis pointed out that the optimal solution is sensitive to the initial guess of 

the ai set. As can be expected, this optimal set is probably only a local minimum in an 8 

dimensional parameter space. In order to avoid finding in a irreproducible way a local 

minimum as an optimal set in the optimization, the procedure should start from a well 

founded air quality related initial guess for the ai coefficients. For this we rely on the 

distribution over the 11 EMEP sectors (EMEP, 2007) of the Belgian national air pollution 

emission data. To do so, a pragmatic relation between the 11 EMEP sectors and the 11 

RIO classes was needed. The relations are presented in Table 3 together with the 

corresponding Belgian emission totals of NOx and PM10 for the year 2004. 

In order to transform emission data into ai coefficient values and still keeping the already 

fixed values of zero for the a10 and a11 coefficients as well as the reference value of 1 for 

the a2 coefficient, the sector emission data are normalised with respect to the RCL2

values. In this way a justified set of ai coefficients is obtained which can be used as initial 

guess for a reproducible -optimisation procedure for each pollutant. The NOx set is used 

as start value for both O3 and NO2 since both pollutants are strongly correlated through 

atmospheric photochemistry.

>>>> TABLE 2

Based on the first guess parameterisation of the -parameter, a -value can be assigned to 

each air quality monitoring station. The corresponding values give an indication of the 

land use characteristics in the direct vicinity of the sampling site and will be used to 

classify the sites. 

2.2.3 Optimization of the land use indicator ß

Once the stations are characterised by a -value, we can try to formulate the relations 

between land use and air pollution properties. Therefore, the long term average of the 
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pollutant value in each monitoring station is plotted versus the corresponding -value of 

the station. This plot represents what will be called further on the "trend" function: it is 

the correlation between the mean pollutant value and the land use  parameter for the 

near vicinity (e.g. see Figure 4). In this analysis a time averaging period from 2001 to 

2006 is used for all pollutants.

So far, the  value is determined by the first guess parameterisation of the RIO class 

distribution. At this stage, it is essential to first optimize this parameterisation for each 

pollutant individually. This can be done by optimising the correlation between the 

average air pollution value and the  parameter. Indeed, a perfect (or high) correlation 

between the average air pollution values and the  parameter can be understood as an 

optimal parameterisation of the local character of the spatial distribution of the air 

pollution. Here, the optimization is obtained by minimizing the RMS error of a 2nd order 

polynomial fit. For the numerical optimisation a Generalized Reduced Gradient nonlinear 

optimization code is used, standard available in a numerical software package. Based on 

the initial guess values formulated in Section  2.2.2, optimal solutions were identified for 

O3 and NO2. For PM10 the solver did not find the best solution automatically. With some 

minor manual corrections and by further optimizing only a subset of the ai set, a slightly 

lower RMSE value for the fit could be identified. However, in general we can conclude 

that the procedure for the initialisation of the ai parameters was successful and gives rise 

to acceptable results which can easily be reproduced. The resulting optimal weights ai for 

the  parameterisation are summarized in Table 3.

The 2nd order polynomial fit that is obtained in the optimization procedure can be used as 

a mathematical expression for the trend function describing the land use – air quality 

relations. If the polynomial fit turns out to be non-monotone (e.g. Figure 4 – right panel), 

a constant level is imposed for the lower/higher -values to describe the plateau which is 

reached. As an alternative, an asymptotic exponential function can be used to describe the 

trend. In a cross check analysis it was concluded that this alternative function gives

similar results.

>>>> TABLE 3
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Based on the optimized ai parameters, a -indicator can be calculated for each monitoring 

station and for each type of pollutant separately and a corresponding best fit for the trend 

function is obtained. Results for the summer average of the maximum daily 1h ozone 

values are presented in Figure 4 where the average is given separately for week and 

weekend days. As becomes clear from the plots, a clear trend can be observed for the 

average daily maximum ozone value as a function of the -parameter. This figure also 

indicates the well known characteristics of the ozone phenomenon in Belgium, which is 

typical for regions with a high population and traffic density (Vanderstraeten 1996). For 

low -values (in rural areas) average ozone values are high and equal for week and 

weekend days. For high -values corresponding to urban or industrialized regions, lower 

average ozone values are observed and much more difference is revealed between week 

and weekend days. This phenomenon can be explained by the so called “NO titration 

effect”. This effect is known for a long time (Jiménez  et al. 2005, Sillman 1999) and was 

also already described by Hooyberghs et al. (2006).

For NO2 the mean values show a more intuitive behaviour with respect to the -values. 

This is presented in Figure 5 where higher daily maximum values are observed for highly 

urbanised or industrialized locations. Note that also here a difference is observed between 

week and weekend days. The results for PM10 are presented in Figure 6. From this plot it 

is clear that PM10 shows the weakest relation of the three pollutants considered in this 

study. This is not a complete surprise, since PM10 is a rather erratic pollutant with many 

unknown or poorly characterized emission sources (Fuller et al. 2004, Almeida et al.

2005) and complex secondary formation processes (Sillanpää et al. 2006).

>>> FIGURE_4

>>> FIGURE_5

>>> FIGURE_6

2.2.4 ß land use indicator maps
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Up to now the optimized parameterisation of the -indicator was applied to establish the 

land use indicator in the vicinity of the monitoring sites. However, the -indicator can 

also be calculated on a regular grid for the entire territory of the country. To obtain such a 

gridded -map on the base of the CLC map shown in Figure 1 the contribution of each 

RIO-class (or equivalently CLC) is calculated in each grid cell and subsequently 

converted into a unique -value according to the definition in Eq. (1). The resulting -

maps for ozone, NO2 and PM10 are presented in Figure 7.  The plots in this figure indicate 

the similarities and the differences in the general spatial distribution pattern of the three 

air pollutants. The spatial distribution pattern of ozone and NO2 are rather similar. This 

can be explained by their strong (but opposite) relation to NOx emission sources in 

urbanised and industrialised areas. It must indeed be repeated that due to the NO-titration 

effect, high -values in the ozone map correspond to low ozone concentrations whereas  

the opposite is true for NO2 concentrations. In the -map for PM10 the major urbanised 

regions are recognised as well but higher -values are now also observed in some rural 

areas of the country. Those regions are characterised by important agricultural activities 

which have an non-negligible impact on the PM10 formation due to primary emissions 

and emissions of PM10 precursors such as NH3 (Erisman et al. 2004, Pinder et al. 2007, 

Mensink et al., 2007).

>>> FIGURE_7

In the CLC data set, traffic is available as an individual class given that this is the 

dominant land use in the 100x100 m² pixel. It turns out that only a small fraction of the 

total number of pixels can be attributed to a pure traffic class. Nevertheless, the effect of 

traffic is expected to be large in the vicinity of the major highways, in particular for NO2. 

To upgrade the current RIO methodology a combination of CLC information and traffic 

volumes was tried out to deduce a more complex -parameter along the same lines as 

presented above. It turned out that the addition of an optimized traffic term contributed to 

the NO2 -values for some 5% as an average over all grid cells, although for some cells 

the contribution was more important. For ozone and PM10 no contribution at all was 

observed after the optimisation procedure. From this analysis it can be concluded that 
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most of the information of traffic impact on ambient air quality levels is already 

contained in the CLC data set. 

2.3 Detrending of measured values

So far, only trend functions for the mean values of the pollutant concentration at the 

measuring sites are presented. However, similar trends can be established for the variance 

or standard deviation of the time series of the monitoring data (Figure 8). A net trend is 

observed for the standard deviation of the distribution of NO2 and PM10 values. As a 

consequence it can be concluded that also the variance in those NO2 and PM10

concentration values depends on the land use. For ozone, it turns out that the variance is 

rather independent of the land use characteristics.

>>> FIGURE_8

The basic idea of the RIO model is to apply those relations (for both the mean values and 

standard deviations) in a detrending procedure of the air quality sampling values. This 

detrending procedure is an essential step to obtain spatial homogeneity of the sampling 

values before they are used in the interpolation scheme. The detrending step is 

schematically depicted in Figure 9. According to a station’s -value, a theoretical shift 

C is calculated as the difference between an arbitrary reference level (in the case of NO2

this is 70µg/m³) and the trend function. This residue C is then added to the sampling 

value to establish the detrending. By doing so, the local character of the monitoring data 

is removed and all values are transformed to a site-independent (-independent) reference 

level. Of course, local differences between the various monitoring sites still exist in the 

detrended sampling values (as they were already present before detrending) due to local 

variability of the general air quality pattern over the region.

>>> FIGURE_9
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The detrending of the mean value is performed by a simple linear translation as presented 

in Figure 9. As mentioned above, for some of the pollutants a  clear trend is also observed 

in the standard deviation of the monitoring time series. In order to remove also the 

discrepancies in the variances of the sampling data at different locations, a detrending (or 

rescaling) is also applied for the standard deviation according to the transformation:

    xxxx ref 



det (2)

where ref is the reference level of the detrending,  is the theoretical standard deviation 

corresponding to the local -value of the station and x  is the overall mean of the time 

series. This transformation ensures a reshaping of the data to obtain an uniform standard 

deviation ref. The result of the detrending procedure for two typical stations is presented  

in Figure 10. From those graphs it becomes clear that initially both stations have a totally 

distinct character and distribution. Those differences are almost completely removed after 

the detrending operation. An overall appreciation of the quality of the detrending 

procedure can be obtained from Figure 11, where the mean values and standard 

deviations for all NO2 stations are presented before and after the detrending procedure. 

From this figure, it is clear that a large part of the local character of the measurement time 

series is removed by the detrending, both in the mean value and the variance of the 

probability density. This is a crucial achievement in the RIO methodology.

>>> FIGURE_10

>>> FIGURE_11

2.4 Kriging interpolation of detrended values

The interpolation routine of RIO is based on an Ordinary Kriging scheme (Isaaks et al.

1989). This technique was originally developed in geostatistics but has proven to be 

successful in other domains as well (Van Leeuwen et al. 1996, Denby et al. 2005). The 

Kriging technique which is used in this work differs from the standard technique on one 

important point. In standard Ordinary Kriging the variogram or spatial correlation 
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function is solely determined on the basis of the input values of the interpolation problem 

at hand. However, for air quality interpolation problems the number of input values for a 

particular situation (e.g. a 1 hour averaged real-time data set) is rather limited. For a 

country such as Belgium, typically 50 sampling sites are available. This limited number 

of sampling values can compromise the statistical significance of the correlation function 

or variogram. Moreover, air pollution sampling values can be subject to rather large 

variations on a 1 hour time step. As a result, the correlation function will be subject to the 

same (erratic) variations. To tackle this problem and to improve statistics, the correlation 

functions in RIO are constructed on the basis of the entire historical set of measurement 

time series. In this way a larger data set over different years can be used for the 

construction of the correlation function. In addition, this procedure allows for a unique 

correlation function for each time averaging value that is to be calculated by the 

interpolation model. Correlation functions can be constructed for e.g. maximum 1-hour

values, for daily mean values, for maximum daily 8-hour mean values or for each specific 

hourly value in the day. The correlation functions are not calculated for week and 

weekend days separately as was done for the trend functions. In a cross check only minor 

differences were observed when both data sets are handled separately. This is because the 

correlation functions are established on the base of already detrended time series where 

week and weekend days differences are already levelled out since both data sets are 

transformed to the same reference level.

Examples of the spatial correlation functions are given in Figure 12 and Figure 13. The 

points in the plots represent the correlation values defined as the covariance of two time 

series in a pair of two detrended monitoring stations, separated by a distance r. The red 

lines in the plots represent the best (exponential) fit and are used as a spatial correlation 

function in the Kriging interpolation scheme. 

From Figure 12 it is clear that a significant difference is observed between the three 

pollutants. It turns out that (detrended) ozone is highly correlated, up to very long 

distances. For PM10 and NO2, much more scatter is observed in the spatial correlation 

plots and correlation functions with a shorter range are obtained. 

>>> FIGURE_12
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As stated before, the RIO methodology can be applied for any time aggregation value. 

Therefore, the correlation functions are also derived for each hourly value in the day. For 

ozone, the results are presented in Figure 13 and similar results are obtained for NO2 and 

PM10. In this plot, it can be noticed that for morning and evening ozone values the spatial 

correlation is rather low. For ozone values in the (late) afternoon high correlations are 

observed in agreement with the maximum 1-hour correlation function in Figure 12.

>>> FIGURE_13

2.5 Re-trending the Kriging results

When the Kriging interpolation of the detrended air quality values is performed, a 

subsequent re-trending procedure has to be performed in order to restitute the impact of 

the local land use characteristics in each spatially interpolated point. This re-trending is 

carried out by making use of the specific -value of the interpolation grid cell (see Figure 

7 for the -maps). Based on this grid cell specific -value a concentration shift C can be 

determined as the difference between the reference level and the trend function. This 

concentration residue C is then subtracted from the grid cel concentration value 

obtained in the Kriging interpolation. The procedure re-introduces the local character in

the concentration level. The general idea of the re-trending is presented in Figure 14.

Although not presented in this figure, a re-scaling of the Kriging map is also applied in 

order to restore the scaling transformation as presented in Eq. (2).

>>> FIGURE_14
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3 Results and discussion

3.1 Model validation

In this section the performance of the RIO interpolation model is examined in a so called 

jack-knife or cross-validation analysis making use of the “leaving-one-out” principle. For 

one particular station each value in the historical time series is recalculated making use of 

all available monitoring data at that time step except the sampling value of that particular 

station. This procedure is repeated for the entire time series and for every monitoring 

station. The years 2003 – 2006 are used as a fixed time period in this analysis. As a 

validation procedure, the interpolated time series obtained in this way can then be 

(statistically) compared to the genuine measured values. Here, the quality of the model 

results is expressed by the Root Mean Square Error (RMSE), the bias and the Mean 

Absolute Error (MAE).

In order to further evaluate the overall performance of the RIO model, RIO results are 

compared to two standard interpolation techniques. For this purpose, a fourth power 

Inverse Distance Weighting (IDW) interpolation scheme is applied together with the 

Ordinary Kriging (OK) interpolation methodology as available in e.g. commercial GIS 

packages. The IDW scheme is retained in this analysis since it was commonly used in the 

past as the standard technique for the production of air quality maps. For the Ordinary 

Kriging, the special RIO technique of detrending before Kriging and re-trending 

afterwards is not applied. Furthermore the correlation functions as described in Section 

 2.4 are not applied but a unique variogram is determined for each time step based on the 

spatial distribution of the corresponding input values. 

Figure 15 presents the results of the cross-validation with the OK and RIO model for 

ozone. From the figure it is clear that the OK model produces larger RMSE values in the 

majority of the sampling sites compared to the RIO model. Thereby, the RIO model 

results are in general less biased compared to the standard interpolation technique. 

Similar validation results are presented for NO2 and PM10 in Figure 16 and Figure 17, 

respectively. With the exception of a few monitoring locations, the performance of the 

RIO model is in almost all monitoring stations better than the standard technique. 
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Averaged RMSE, bias and MAE values over all available Belgian monitoring locations 

are summarized in Table 4. It is clear from the table that RIO outperforms the standard 

interpolation techniques as for each of the three pollutants the three quality indicators 

(RMSE, bias and MAE) improve. These RMSE correspond to rather accurate estimates 

(relative errors of 11% O3, 26% NO2, 28% PM10) which can clearly compete, as far as 

accuracy is concerned, with the results of much more sophisticated deterministic models 

used for air quality assessments (Van Loon et al. 2007, Vautard et al. 2007)

>>> TABLE 4

>>> FIGURE_15

>>> FIGURE_16

>>> FIGURE_17

3.2 Interpolation maps

In this section, the performance of the interpolation model is not evaluated on a statistical 

basis as in the previous section, but by means of actual annual air quality maps for 2006

obtained with the two different interpolation techniques. The maps of the annual mean 

are obtained by an hour by hour interpolation of all available (hourly) measurements in 

2006. Then, for each pixel in the final map all hourly results are averaged over the year. 

Note that in this hour-by-hour interpolation RIO is using the hourly parameterisations as 

derived in the statistical analysis (see Figure 13 in § 2.4).

In Figure 18 the annual mean ozone maps for the year 2006 are presented for both the 

RIO and Ordinary Kriging interpolation techniques. A comparison of the two maps 

clearly shows the strength of the RIO interpolation scheme as it is able to introduce land 

use based local variations in the ozone concentrations fields at places where no 

monitoring data is available. Whereas standard techniques have to rely only on the 

monitoring data themselves and their relative distances and correlations.

Similar maps for the 2006 annual mean of NO2 and PM10 are presented in Figure 19 and 

Figure 20. For NO2, the difference between the Ordinary  Kriging map and the RIO map 
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is even more pronounced. This is due to the fact that a great deal of the NO2 monitoring 

stations is located in urbanised or industrialized areas, more than it is the case for the 

ozone sampling sites. As a consequence, a standard interpolation technique extrapolates 

these enhanced NO2 levels from the urban sites to the rural areas. RIO is able to deal with 

these urban stations in a much more accurate way by limiting the high values to only 

those areas with an urban character. The same conclusions can be drawn for the PM10

maps. Here, the effect is even more explicit than for the NO2 case. It turns out that almost 

all of the PM10 sampling sites operational in 2006 can be classified as urban, industrial or 

traffic stations. Based on those measurements only, PM10 pollution over a large part of 

territory of Belgium would be assessed according to these enhanced PM10 levels. Based 

on the RIO model, the high PM10 levels are restricted to the urbanised regions, whereas 

lower levels are introduced in the rural areas. This result radically changes the outcome 

of any assessment of the exposure of population or area to high concentration values such 

as exceedances of the European limit values.

>>> FIGURE_18

>>> FIGURE_19

>>> FIGURE_20

3.3 Uncertainty

When interpolation maps are used for air quality assessments, it is important to have an 

idea of the uncertainty of the presented maps. Therefore the errors introduced by the RIO 

interpolation scheme are further explored in this paragraph.

3.3.1 Kriging error

When solving the Ordinary Kriging equations, a value for the error variance can be 

obtained at the same time (Isaaks et al. 1989). This error variance 2
R  is a measure for the 

uncertainty (1 R ) of the interpolation result. The parameters that determine the spatial 

pattern of 2
R are obtained by the Kriging solution. The overall scale of 2

R is fixed by
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the variance 2  of the so-called random function model which is the only quantity that 

needs to be specified. A most obvious choice would be to take the average of the 

variances of the time series obtained in the different monitoring stations over the country. 

This choice would be acceptable if, and only if spatial patterns of air pollution around all 

monitoring stations would be homogeneous. However, due to local and regional pollution 

sources and sinks, the air pollution phenomenon does not obey at all the necessary 

requirement of spatial homogeneity and as a consequence, a unique variance 2 , 

representative for any location can not be used. To tackle the problem, a -depended 

variance   2  will be introduced in the 2
R  calculation, based on the trend analysis of 

the variance as presented in Figure 8. These plots indicate that the variance is positively 

correlated with the -parameter and that (with an exception for ozone) increased -values 

correspond to increased  ’s. This dependency and the fact that   2  is now used as a 

scaling factor for   2
R  makes that for regions with a low -value, the Kriging 

interpolation error is smaller compared to a result that would have been obtained with a 

unique   averaged over all stations whereas in urbanised and industrialised regions, 

characterised by higher β-values, the Kriging error is higher.

3.3.2 Re-trending error

Besides the error due to the Kriging interpolation scheme, an error is also introduced by 

applying the “trend function” during the re-trending procedure. As this trend function is 

only a best estimator for the β-dependency of the pollution data (see Figure 21), the use 

of it during re-trending gives rise to an additional uncertainty. Therefore the error on the 

polynomial fit through the scattered data is used as an additional and cell specific error 

term   trend . 

>>> FIGURE_21
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3.3.3 Total error map

The total error attributed to the final RIO interpolation result is then calculated as:

      22
trendRtot  , (3)

where both the Kriging error   R  and the error introduced by applying the trend 

function   trend  are taken into account. 

As an illustration Figure 22 presents a relative error map for a maximum 1-hour NO2 map 

of a particular day. Low interpolation errors (~18%) are found in the vicinity of the 

monitoring stations whereas higher values (~25%) are found far away from any sampling 

site. This typical circular error pattern is predominantly caused by the Kriging error. This 

pattern however is locally distorted according to the corresponding land use 

characteristics introduced by the -dependencies of both error terms in Eq. (3). It is 

interesting to note that the relative higher errors in the North-eastern part of the country 

are caused by the fact that for the three monitoring stations in this region no valid 

measurement values were present for this particular day. When measurement data is 

available in this region, the error values are further reduced.

>>> FIGURE_22

As a closing remark it must be said that the introduction of a supplementary driver (de-

and re-trending) on top of the Ordinary Kriging for the spatial interpolation, slightly 

increases the overall total error on the final result.  This disadvantage however is largely 

compensated by the benefits of a much more reliable spatial prognosis obtained in the 

RIO scheme by introducing the de- and re-trending intelligence, as it is driven by the 

nature of the pollution itself.

3.4 Operational application
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From the viewpoint of applicability it is emphasised again that RIO is able to describe 

different time aggregation values of one pollutant. For the Belgian Interregional 

Environment Agency (IRCEL) daily maximum 1-hour values, maximum daily 8-hour 

means and daily mean values are implemented in the model code together with the 

possibility of an hour by hour interpolation of a set of (real time) hourly sampling values. 

This latter option allows maximal flexibility and the possibility for calculation of any 

time aggregation value over any time window from a one hour map up to a map of annual 

mean concentrations. The former types of maps are published in real time on-line on the 

website (www.irceline.be) in order to visually inform the authorities and the public about 

the current and forecasted air quality levels. The latter is used for assessing air quality 

levels and checking the compliance with limit and target values within the context of the 

reporting obligations in the EU directives. 

Finally it is stressed that the computational cost of RIO is by no means comparable to 

deterministic air quality models. The Fortran code of the RIO model produces air quality 

maps on a standard PC within two seconds. This extremely low computational time 

(compared to deterministic air quality models) is an important asset for the RIO model in 

the operational setup at IRCEL. 

4 Conclusions

In this paper the RIO model is presented as an “intelligent” interpolation model for air 

pollution data. The model was initially developed for ozone interpolations and population 

density was used as a spatially driving force. In this work, the model is extended for NO2

and PM10 and a land use indicator based of the CLC data set is introduced. This new land 

use indicator (the -parameter) offers a maximum flexibility in the development of the 

relations between land use and air pollution levels. Those relations are the core of the 

RIO model and they are used to remove the local character of the air quality monitoring 

data before they are used in the interpolation scheme. In the RIO model, a detrending of 

the monitoring data is applied according to the observed trend in the mean values and the 

standard deviation. Especially for NO2, the latter effect is substantial. 

http://www.irceline.be/
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The evaluation of the RIO model in a cross-validation procedure clearly revealed that the 

new methodology produces better results compared to standard interpolation techniques 

such as IDW or Ordinary Kriging. The improvements of the RIO model can be attributed 

to the detrending procedure which is applied on the air quality monitoring data and the 

re-trending step that is imposed on the Kriging map. It was shown that RIO performed 

best on the basis of all indicators. In this respect, the small bias values of the RIO model 

were most striking. Subsequently, the interpolation model was further evaluated based on 

the resulting maps. It was illustrated that RIO is able to produce local variations in the 

concentration fields at places where no monitoring data is available. This is because of 

RIO’s ability to incorporate land use information and not just monitoring data. This is 

especially important if the air quality gradients at the urban-rural interface have to be 

described. 

At present, the RIO model is being extended along the same lines to incorporate SO2

measurements. Further we will explore the possibilities to use satellite retrievals such as 

the Aerosol Optical Thickness parameter as a alternative driving force for the CLC -

indicator in the RIO interpolation scheme for PM10 (Koelemeijer et al. 2006).

The accuracy of the RIO model in combination with it extremely low computational cost 

makes it a valuable tool for the Belgian Interregional Environment Agency IRCEL in 

their air quality assessments.
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Tables

Table 1: Definition of the 11 RIO classes (RCL) as a combination of the 44 CLC classes.

RIO 
class

Description CLC 
classes

RCL1 Continuous urban fabric 1
RCL2 Discontinuous urban fabric, green and sport 2,10,11
RCL3 Industrial or commercial units 3
RCL4 Road and rail networks and associated land 4
RCL5 Port areas 5
RCL6 Airports 6
RCL7 Mine, dump and construction sites 7-9
RCL8 Arable land 12-14
RCL9 Agricultural areas 15-22
RCL10 Forest and semi natural areas 23-34
RCL11 Wetlands and waterbodies 35-44

Table 2: Pragmatic relation between the RIO classes and the EMEP sectors. Corresponding EMEP 
emission totals for the year 2004 and their ratio to the RCL2 value. The latter ones will  be used as 

initial guess for the ai-parameters in de -optimisation.

Emission totals 2004 
[Gg/y]

Rel. emissions with 
respect to RCL2
(ai initial guess)

RIO 
class

Pollutant 
coefficient ai

EMEP
sectors

NOx PM10 NOx PM10

RCL1 a1 S2 25.84 2.84 1.0 1.0
RCL2 a2 S2 25.84 2.84 1.0 1.0
RCL3 a3 S3 + S4 71.91 19.18 2.8 6.8
RCL4 a4 S7 133.53 9.33 5.2 3.3
RCL5 a5 S8 21.61 23.69 0.8 8.3
RCL6 a6 S8 21.61 23.69 0.8 8.3
RCL7 a7 S1+ S4 + S5+ S9 66.71 20.41 2.6 7.2
RCL8 a8 S10 0.00 3.06 0.0 1.1
RCL9 a9 S10 0.00 3.06 0.0 1.1
RCL10 a10 S11 0.00 0.00 0.0 0.0
RCL11 a11 S11 0.00 0.00 0.0 0.0
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Table 3: Optimised set of ai-parameters for the  indicator. Parameter values are given for each 
pollutant. The column frac. contains the relative contribution of a RIO class in the buffer zones of all 
monitoring stations.

O3 NO2 PM10RIO 
class

Description
ai frac. ai frac. ai frac.

RCL1 Continuous urban fabric 1.01 5.9% 2.71 4.3% 1.16 3.6%
RCL2 Discontinuous urban fabric 1.00 35.4% 1.00 34.2% 1.00 38.9%
RCL3 Industrial or commercial units 1.41 8.6% 1.23 11.2% 2.07 11.2%
RCL4 Road and rail networks 4.30 2.1% 6.12 2.6% 2.23 2.5%
RCL5 Port areas 8.38 0.2% 3.24 4.1% 2.65 2.1%
RCL6 Airports 0.97 0.1% 1.41 0.9% 1.01 1.1%
RCL7 Mine, dump and construction sites 1.96 0.7% 1.58 0.8% 10.99 0.8%
RCL8 Arable land 0.80 13.5% 0.33 10.9% 0.64 10.7%
RCL9 Agricultural areas 0.35 22.3% 0.00 17.7% 0.64 17.1%
RCL10 Forest and semi natural areas 0.00 9.5% 0.00 8.1% 0.00 8.0%
RCL11 Wetlands and waterbodies 0.00 1.7% 0.00 5.2% 0.00 4.0%

Table 4: Model performance indicators for the IDW, OK and RIO model and for the three pollutants 
O3, NO2 and PM10. Values are averaged over all available Belgian monitoring locations. The mean 
value for the corresponding time averaging value (e.g. max 1h) is given between brackets <X>. All 
values are in µg/m³.

O3 (max 1h, summer)

< 90.9 >

NO2 (max 1h)

< 54.8 >

PM10 (day avg)

< 35.9 >

model

RMSE Bias MAE RMSE Bias MAE RMSE Bias MAE

IDW 10.97 -1.70 8.16 18.17 4.74 14.43 12.12 1.70 8.49

OK 10.37 -0.44 7.66 16.85 1.45 13.11 11.65 1.22 8.05

RIO 9.56 -0.08 6.89 14.45 -0.67 11.23 9.89 0.01 6.98
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Figures

Figure 1: CORINE Land Cover map for the Belgian region. NO2 monitoring stations with label are 

indicated by the dots. Densely populated and industrialised areas show up as red coloured while 

rural and forest areas are green.

Figure 2: Monitoring station 43R240 (Engis) with a 2 km radius buffer. CLC describes the land use 

in the direct vicinity of the monitoring location.

Figure 3: CLC class distribution in the close vicinity of three typical monitoring locations in Belgium 

(rural, urban background and urban). For each CLC class, the number of pixels inside the station 

vicinity buffer is indicated.

Figure 4: Trend function for ozone: average max 1h ozone values as a function of the -parameter of 

the Belgian monitoring sites. The left panel shows the results for weekdays, the right panel is based  

on averages over weekend days. Averages are based on the summer values only between 2001 and 

2006.  Low ß-values correspond to rural areas, high ß-values to urban or industrialised sites.

Stations are labelled according to their type (rural, urban background, urban, industrial and traffic).

Figure 5: Trend functions for NO2: same as in Figure 4 but for the average max 1h NO2

concentrations on weekdays (left panel) and on weekend days (right panel).

Figure 6: Trend functions for PM10: same as in Figure 4 but for the daily mean PM10 concentrations 
on weekdays (left panel) and on weekend days (right panel).

Figure 7:  land use indicator maps for ozone (left), NO2 (middle) and PM10 (right).  values are 

calculated on a 4x4km² regular grid.

Figure 8: Trend functions for the standard deviation: standard deviation of the sampling values 

(week days only) as a function of the -parameter for max 1h ozone (left), max 1h NO2 (middle) and 
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daily mean PM10 concentrations (right).  The ozone results are obtained from summer data (April 

until September) only.

Figure 9: Schematic outline of the detrending procedure applied to measurements. The blue dots 

represent a selection of measurement values. The red squares are obtained after the detrending step. 

A concentration residue C is added to the measured values. C is given as the difference between 

the reference level and the trend function for the appropriate -value. The trend function is depicted 

as the solid line, the reference level is given as the dashed red line.

Figure 10: NO2 max 1h probability distribution for the urban station 41B006 and  the rural station 

44N050, before (left) and after (right) the detrending procedure.

Figure 11: Mean values (upper panel) and standard deviations (lower panel) of the max 1h NO2

values in all stations before (green) and after (yellow) the detrending procedure. The reference level 

used in the detrending is given as the red line. Stations are ordered according to their -value, rural 

stations to the left, urban and industrial stations to the right.

Figure 12: Spatial correlation functions for detrended max 1h summer ozone values (left), max 1h 
NO2 (middle) and daily mean PM10 concentrations (right). The spatial correlation function is printed 
as a solid red line.

Figure 13: Spatial correlation function for hourly ozone values, specifically determined for each hour 

of the day. 

Figure 14: Schematic outline of the re-trending procedure applied to grid cells. The panel left gives 

the transformation for 4 different grid cells. The red diamons are the result of the Kriging 

interpolation. The blue triangles are the result of the re-trending step. A concentration residue C is 

subtracted from the Kriging result. C is given as the difference between the reference level and the 

trend function for the appropriate -value. The trend function is depicted as the solid line, the 

reference level is given as the dashed red line. The panels on the right give a Kriging map of 

detrended measurements (1), a map of the C residue (2) and the final RIO result (3).
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Figure 15: RMSE (left) and bias (right) for max 1h ozone values. Results are presented for the RIO-

model (yellow bars) and for standard interpolation technique Ordinary Kriging (green bars). 

Summer ozone data are used from the 41 ozone monitoring stations in Belgium between 2003 and 

2006.

Figure 16: Same as in Figure 15 but for the max 1h NO2 values. All available data between 2003 and 

2006 is used in the validation. Note that the indicators of station 41B003 go beyond the range of the 

plot.

Figure 17: Same as in Figure 16 but for the daily mean PM10 values. 

Figure 18: Annual mean ozone map for the year 2006 obtained by the RIO model (left) and Ordinary 
Kriging (right). The small coloured circles on the map represent the ozone monitoring locations and 
the corresponding annual mean value at that station.

Figure 19: Annual mean NO2 map for the year 2006 obtained by the RIO model (left) and Ordinary 
Kriging (right).

Figure 20: Annual mean PM10 map for the year 2006 obtained by the RIO model (left) and Ordinary 
Kriging (right).

Figure 21: Trend function (see left panel of Figure 5) with indication of the error boundaries (dashed 
lines) for max 1h NO2 concentration as a function of the -parameter.

Figure 22: Relative error map for a max 1h NO2 interpolation result. The error is composed of the 
standard Kriging error where a -dependent  is taken into account and an error due to the 
uncertainty of the trend function.
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